来源:新智元
开源先锋StabilityAI一天扔了两枚重磅炸弹:发布史上首个开源RLHF大语言模型,以及像素级图像模型DeepFloydIF。开源社区狂喜!
最近,大名鼎鼎的StableDiffusion背后的公司,一连整了两个大活。
首先,StabilityAI重磅发布了世上首个基于RLHF的开源LLM聊天机器人——StableVicuna。
StableVicuna基于Vicuna-13B模型实现,是第一个使用人类反馈训练的大规模开源聊天机器人。
有网友经过实测后表示,StableVicuna就是目前当之无愧的13BLLM之王!
对此,1xexited创始人表示,这可以看作是自ChatGPT推出以来的第二个里程碑。
另外,StabilityAI发布了开源模型DeepFloydIF,这个文本到图像的级联像素扩散模型功能超强,可以巧妙地把文本集成到图像中。
这个模型的革命性意义在于,它一连解决了文生图领域的两大难题:正确生成文字,正确理解空间关系!
秉持着开源的一贯传统,DeepFloydIF在以后会完全开源。
StailibityAI,果然是开源界当之无愧的扛把子。
StableVicuna
世上首个开源RLHFLLM聊天机器人StableVicuna,由StabilityAI震撼发布!
为以太坊合并准备的EL客户端正式定名为Paris:3月12日消息,以太坊核心开发者 Tim Beiko 在社交网站发文表示,为以太坊合并升级而准备的 EL 客户端正式定名为Paris。
根据路线图设定,以太坊合并升级转移到 PoS 共识需准备 EL 和 CL 两个客户端,在网络达成一定条件时,以太坊第一个后 PoW 区块将由验证者通过 EL 与 CL 客户端节点联合创建。此前已决定将 CL 客户端命名为Bellatrix。[2022/3/12 13:52:26]
一位Youtube主播对StableVicuna进行了实测,StableVicuna在每一次测试中,都击败了前任王者Vicuna。
所以这位Youtuber激动地喊出:StableVicuna就是目前最强大的13BLLM模型,是当之无愧的LLM模型之王!
StableVicuna基于小羊驼Vicuna-13B模型实现,是Vicuna-13B的进一步指令微调和RLHF训练的版本。
而Vicuna-13B是LLaMA-13B的一个指令微调模型。
从以下基准测试可以看出,StableVicuna与类似规模的开源聊天机器人在整体性能上的比较。
StableVicuna可以做基础数学题。
Parallel计划进行NFT拍卖并将拍卖所得捐赠给Khan Academy:1月19日消息,NFT科幻交易卡游戏Parallel计划拍卖一个单一版本的NFT “Inspiring Teacher”,并将所有收益捐给在线学习平台Khan Academy。拍卖将于美国东部时间1月19日下午5点(北京时间1月20日6点)开始,并在21日的同一时间(北京时间1月22日6点)结束。
据The Giving Block数据显示,慈善组织在2021年共收到了超过240万美元的加密货币捐款。(The Block )[2022/1/19 8:59:14]
可以写代码。
还能为你讲解语法知识。
开源聊天机器人平替狂潮
StabilityAI想做这样一个开源的聊天机器人,当然也是受了此前LLaMa权重泄露引爆的ChatGPT平替狂潮的影响。
从去年春天Character.ai的聊天机器人,到后来的ChatGPT和Bard,都引发了大家对开源平替的强烈兴趣。
这些聊天模型的成功,基本都归功于这两种训练范式:指令微调和人类反馈强化学习(RLHF)。
这期间,开发者一直在努力构建开源框架帮助训练这些模型,比如trlX、trl、DeepSpeedChat和ColossalAI等,然而,却并没有一个开源模型,能够同时应用指令微调和RLHF。
大多数模型都是在没有RLHF的情况下进行指令微调的,因为这个过程十分复杂。
最近,OpenAssistant、Anthropic和Stanford都开始向公众提供RLHF数据集。
StabilityAI把这些数据集与trlX提供的RLHF相结合,就得到了史上第一个大规模指令微调和RLHF模型——StableVicuna。
Clearpool与区块链监控平台PARSIQ达成合作:据官方消息,Clearpool与区块链监控平台PARSIQ达成合作,PARSIQ作为业界区块链监控和工作流自动化平台,将为Clearpool的协议提供关键的区块链监控、通知和自动化功能,改善借款人和贷款人使用Clearpool协议的实时体验。
Clearpool将集成PARSIQ的区块链监控工具,使借款人和贷款人能够在协议触发关键活动和事件时立即收到通知。例如单个借款人池利用率、借款人池申请和批准、借款人池部署以及新的发售何时开始和结束。
Clearpool由领先的区块链和风险资本投资者提供支持,包括红杉资本印度,Arrington资本, HashKey资本, 火币风投等。[2021/11/23 7:05:09]
训练过程
为了实现StableVicuna的强大性能,研究者利用Vicuna作为基础模型,并遵循了一种典型的三级RLHF管线。
Vicuna在130亿参数LLaMA模型的基础上,使用Alpaca进行调整后得到的。
他们混合了三个数据集,训练出具有监督微调(SFT)的Vicuna基础模型:
OpenAssistantConversationsDataset(OASST1),一个人工生成的、人工注释的助理式对话语料库,包含161,443条消息,分布在66,497个对话树中,使用35种不同的语言;
GPT4AllPromptGenerations,由GPT-3.5Turbo生成的437,605个提示和响应的数据集;
Alpaca,这是由OpenAI的text-davinci-003引擎生成,包含52,000条指令和演示的数据集。
研究者使用trlx,训练了一个奖励模型。在以下这些RLHF偏好数据集上,研究者得到了SFT模型,这是奖励模型的基础。
OpenAssistantConversationsDataset(OASST1),包含7213个偏好样本;
AnthropicHH-RLHF,一个关于AI助手有用性和无害性的偏好数据集,包含160,800个人类标签;
Partisia Blockchain与Better Internet Search获NGI Trust赠款以开发新搜索引擎:总部位于苏格兰柯科迪的创企Better Internet Search和Web 3.0平台Partisia Blockchain获得由欧盟资助的Next Generation Internet Trust(NGI Trust)的赠款,以开发一种新的替代搜索引擎。据悉,NGI Trust支持以人为中心的互联网发展,并通过欧盟的Horizon 2020研究和创新计划为项目提供赠款援助。(The Courier.co.uk)[2021/2/18 17:26:49]
斯坦福人类偏好(SHP),这是一个数据集,包含348,718个人类对各种不同回答的集体偏好,包括18个从烹饪到哲学的不同学科领域。
最后,研究者使用了trlX,进行近端策略优化(ProximalPolicyOptimization,PPO)强化学习,对SFT模型进行了RLHF训练,然后,StableVicuna就诞生了!
据StabilityAI称,会进一步开发StableVicuna,并且会很快在Discord上推出。
另外,StabilityAI还计划给StableVicuna一个聊天界面,目前正在开发中。
相关演示已经可以在HuggingFace上查看了,开发者也可以在HuggingFace上下载模型的权重,作为原始LLaMA模型的增量。
但如果想使用StableVicuna,还需要获得原始LLaMA模型的访问权限。
获得权重增量和LLaMA权重后,使用GitHub存储库中提供的脚本将它们组合起来,就能得到StableVicuna-13B了。不过,也是不允许商用的。
DeFi项目ParaSwap融资270万美元 CoinGeck等参投:法国DeFi项目ParaSwap已完成270万美元种子轮融资,获得CoinGeck等30多个投资者的资助。ParaSwap计划利用这笔资金来扩大其基础设施规模。(Decrypt)[2020/9/17]
DeepFloydIF
在同一时间,StabilityAI还放出了一个大动作。
你敢信,AI一直无法正确生成文字这个老大难问题,竟然被解决了?
没错,下面这张「完美」的招牌,就是由StabilityAI全新推出的开源图像生成模型——DeepFloydIF制作的。
除此之外,DeepFloydIF还能够生成正确的空间关系。
模型刚一发布,网友们已经玩疯了:
prompt:Robotholdinganeonsignthatsays"Icanspell".
不过,对于prompt中没有明确说明的文字,DeepFloydIF大概率还是会出错。
prompt:AneonsignofanAmericanmotelatnightwiththesignjavilop
官方演示
顺便一提,在硬件的需求上,如果想要实现模型所能支持的最大1,024x1,024像素输出,建议使用24GB的显存;如果只要256x256像素,16GB的显存即可。
是的,RTX306016G就能跑。
代码实现:https://gist.github.com/Stella2211/ab17625d63aa03e38d82ddc8c1aae151
开源版谷歌Imagen
2022年5月,谷歌高调发布了自家的图像生成模型Imagen。
根据官方演示的效果,Imagen不仅在质量上完胜OpenAI最强的DALL-E2,更重要的是——它能够正确地生成文本。
迄今为止,没有任何一个开源模型能够稳定地实现这一功能。
与其他生成式AI模型一样,Imagen也依赖于一个冻结的文本编码器:先将文本提示转换为嵌入,然后由扩散模型解码成图像。但不同的是,Imagen并没有使用多模态训练的CLIP,而是使用了大型T5-XXL语言模型。
这次,StabilityAI推出的DeepFloydIF复刻的正是这一架构。
甚至在测试中,DeepFloydIF凭借着COCO数据集上6.66的zero-shotFID分数,直接超越了谷歌的Imagen,以及一众竞品。
下一代图像生成AI模型
具体来说,DeepFloydIF是一个模块化、级联的像素扩散模型。
模块化:
DeepFloydIF由几个神经模块组成,它们在一个架构中相互协同工作。
级联:
DeepFloydIF以多个模型级联的方式实现高分辨率输出:首先生成一个低分辨率的样本,然后通过连续的超分辨率模型进行上采样,最终得到高分辨率图像。
扩散:
DeepFloydIF的基本模型和超分辨率模型都是扩散模型,其中使用马尔可夫链的步骤将随机噪声注入到数据中,然后反转该过程从噪声中生成新的数据样本。
像素:
DeepFloydIF在像素空间工作。与潜在扩散模型不同,扩散是在像素级别实现的,其中使用潜在表征。
上面这个流程图展示的就是,DeepFloydIF三个阶段的性能:
阶段1:
基本扩散模型将定性文本转换为64x64图像。DeepFloyd团队已经训练了三个版本的基本模型,每个版本都有不同的参数:IF-I400M、IF-I900M和IF-I4.3B。
阶段2:
为了「放大」图像,团队将两个文本条件超分辨率模型应用于基本模型的输出。其中之一将64x64图像放大到256x256图像。同样,这个模型也有几个版本:IF-II400M和IF-II1.2B。
阶段3:
应用第二个超分辨率扩散模型,生成生动的1024x1024图像。最后的第三阶段模型IF-III拥有700M参数。
值得注意的是,团队还没有正式发布第三阶段的模型,但DeepFloydIF的模块化特性让我们可以使用其他上采样模型——如StableDiffusionx4Upscaler。
团队表示,这项工作展示了更大的UNet架构在级联扩散模型的第一阶段的潜力,从而为文本到图像合成展示了充满希望的未来。
数据集训练
DeepFloydIF是在一个定制的高质量LAION-A数据集上进行训练的,该数据集包含10亿对。
LAION-A是LAION-5B数据集英文部分的一个子集,基于相似度哈希去重后获得,对原始数据集进行了额外的清理和修改。DeepFloyd的定制过滤器用于删除水印、NSFW和其他不适当的内容。
目前,DeepFloydIF模型的许可仅限于非商业目的的研究,在完成反馈的收集之后,DeepFloyd和StabilityAI团队将发布一个完全免费的商业版本。
参考资料:
https://stability.ai/blog/stablevicuna-open-source-rlhf-chatbot
https://stability.ai/blog/deepfloyd-if-text-to-image-model
作者:北辰 从比特币白皮书开始,crypto世界的诞生就携带着强烈的价值取向,它的颠覆性一度被当作犯罪工具.
4月24日-4月30日当周,比较值得关注的动态如下:Sui?性能更新:测试网最终确定时间约为?480?毫秒;TigerGlobal?将?OpenSea?估值下调至?30?亿美元;Solana?推.
原文标题:《Time,slots,andtheorderingofeventsinEthereumProof-of-Stake》原文作者:GeorgiosKonstantopoulos、Mike.
上证报中国证券网讯4月22日,香港金融管理局副总裁陈维民在第五届粤港澳大湾区金融发展论坛论坛上表示,香港金管局加快金融科技发展,支持数字化经济建设.
编辑:YuanShan@Web3CN.Pro 目录 一、项目简介 二、项目愿景 三、特色和优势 1.隐私性 2.PLONK证明系统 四、发展历史 五、团队背景 六、融资信息 七、发展成果 1.
2023年4月20日根据官方推特消息公告,公链项目Sui已经敲定将在5月3日上线主网,而事先通过加密货币交易所发售的原生代币SUI也将在主网启动期间被解锁.