链资讯 链资讯
Ctrl+D收藏链资讯
首页 > DAI > 正文

区块链:科普 | 天冷了,干了这碗“零知识证明”鸡汤_Cetus Protocol

作者:

时间:

前言:从一锅鸡汤说起

当读者刚开始接触零知识证明的概念时,面临第一关就是如何搞懂突如其来的大量名词,比如离散对数问题、双线性对还有Groth16、PLONK、RedShift等。不妨我们借用“烹饪”这个生活场景来类比其中的层次关系。

如果把“密码学”比做“烹饪”,那么上个系列中对双线性对的学习就类似于学习炖汤前先简单了解的高压锅的工作原理,而zkSNARK则相当于在说明如何用高压锅炖出美味鸡汤。

由此可见,双线性对是类似基础工具的角色:就像高压锅既可以炖鸡汤也可以炖排骨汤,双线性对既可以用于零知识证明也可以用于构造签名等密码学算法。而Groth16、PLONK、RedShift等,它们同属于zkSNARK,属于同一层次,如果沿用上述类比,那大概就是对应用高压锅做汤的风味选择了。Groth16算法是JensGroth提出的一种zkSNARK算法,相关论文不仅对已有算法进行改进,而且讨论了基于配对的非交互式零知识论证的证明大小问题。Groth16因其精简的证明大小和高效的验证效率,在ZCash等项目中多有应用,是最经典的零知识证明算法之一。

国务院:推进科普与区块链技术深度融合:为贯彻落实党中央、国务院关于科普和科学素质建设的重要部署,依据《中华人民共和国科学技术进步法》、《中华人民共和国科学技术普及法》制定《全民科学素质行动规划纲要(2021-2035年)》,其中要求实施智慧科普建设工程。推进科普与区块链等技术深度融合,强化需求感知、用户分层、情景应用理念,推动传播方式、组织动员、运营服务等创新升级,加强“科普中国”建设,强化科普信息落地应用,与智慧教育、智慧城市、智慧社区等深度融合。(新华社)[2021/7/10 0:40:52]

上一个系列中我们完整介绍了零知识证明中用到的椭圆曲线和双线性配对相关的基础知识。本系列通过动手算的方式,以Groth16算法为例,循序渐进地介绍zkSNARK的基本原理。

本篇是“动手算Groth16”的上篇,主要介绍如何从程序转化为电路和描述算数电路的一种约束系统R1CS。下篇会介绍如何从R1CS转化为多项式相关的约束问题,并且详细给出完整的Groth16从头到尾的手算步骤。

欧科云链集团正式启动区块链科普行动“星途计划”:欧科云链集团于4月26日,正式宣布启动了区块链科普行动——“星途计划”,行动包括将在全国范围展开系列沙龙,加大力度推进区块链科普进机关、进国企、进校园等,联合政府部门、行业协会等共同构建起更加完善和有效的区块链科普教育生态,与此同时,直击区块链科普现存痛点,推出简单易懂的“秒懂区块链”公益短视频课。

该计划旨在全维度推动社会建立对产业更清晰的认知,与“鲲鹏计划”一道助力数字经济及区块链产业本身健康发展夯实“人才”和“产业认知”两大基础。[2021/4/26 20:59:37]

程序与电路

初始接触通用零知识证明算法时,读者可能最容易感到疑惑的地方就是各种资料中频繁提到的“电路”一词。这里的“电路”是指什么?它又如何等价地对同一个问题进行描述呢?回答这些问题最简单的方式就是使用具体的一个算法例子进行说明。比如我们有下面一段程序代码,如何将其转化为等价的电路呢?

动态 | 浙江卫视节目科普支付宝区块链防伪溯源产品:昨日,在浙江卫视播出的科普综艺栏目《智造将来》现场,支付宝首次展示了支付宝区块链防伪溯源产品,以接地气的方式公开向大众展示区块链在生活中的应用。[2019/3/4]

▲需要被转化为电路的代码

这里需要注意到程序中值被存储在变量中,而电路中的值是用电路门之间的连线表示的。这其中有个关键的不同是:变量的值是会随着时间变化的,而电路中连线的值是固定不能改变的。因此首先我们通过引入一些中间量的方式表示随循环而不断变化的各阶段的变量值,中间量命名为tmp1,tmp2...这样的形式:

中科院自动化研究所将面向大中小学生开展区块链等主题的科普讲座:5月21日,新华网讯,今年,中国科学院自动化研究所将举办第十四届“自动化之光”公众科学开放日活动。届时,自动化所将面向大中小学生分别开展《脑与智能》、《区块链技术与平行智能》、《大数据时代的视觉智能》、《动画真奇妙》等4个主题报告,用实例和生动的演示深入浅出地为大家揭示智能技术的原理和奥妙。[2018/5/21]

▲引入辅助的中间量

最后我们可以转化为只有加法门和乘法门的算数电路:

▲电路示意图

这里除去输入和输出外,其他的圆圈代表了电路中的门:可以是乘法门或者加法门。而门和门之间的连线对应了程序中的中间变量在某个时刻的值。

金色财经独家分析 监管机构、媒体、业界提示风险 区块链科普道阻且长:新华社今日发文表示,近来“区块链”类案件频发,不法分子以“投资虚拟货币周期短、收益高、风险低”为借口,取用户信任并诱使其转账进行投资。无独有偶,同日消息,腾讯手机管家安全专家也提醒此类风险,并从技术上提出防建议。在美国,监管机构警示加密货币欺诈现象普遍承诺高收益而不披露潜在风险。金色财经独家分析,不法分子假借新技术之名进行,一方面是抓住民众趋利的心理,一方面反映出区块链科普的欠缺。区块链是新兴科技和底层技术并有改变社会生产关系的潜力,应该进行系统性的科普教育,当前,部分大学已经开始设置了区块链课程,但对于普通民众仍然有科普的需求,人们应该了解到系统和正确的知识,不仅要了解区块链的好,也要明确局限和弊端,以在高收益的诱惑下,保持清醒客观。[2018/4/11]

如果站在更高的角度思考,其实可以发现有很多结构都能实现“运算”功能,比如说神经元组成的人脑,比如冯·诺伊曼结构的计算机,甚至更早的机械计算器和当今的人工神经网络。算数电路也是这样的一种能够完成一定运算的结构,而且基于这种结构我们能够完成对计算输入和过程的“零知识证明”。因此通用零知识证明算法普遍引入了“电路”这个运算结构并且会研究,如何更好的将高级语言描述的问题转化为等价的算法电路。

上面例子中约束较多,会给后续的“动手算”产生较多的计算量压力,因此在下文中我们以一个新的例子重新展示这个转化的过程。本系列后续文章都会以这个新的例子为主线进行叙述,从而真实展示证明和验证的具体计算过程。新例子的程序代码如下:

这里涉及到4个连线以及两个等式关系。这两个等式关系用更规范的方式重写一下可以帮助读者看地更清晰:

观察这两个式子的特点,可以发现两个等式关系其实都可以写作A×B=C的形式,其中A、B和C都是变量的“加权组合”。这并非巧合,而是我们有意为之。通过这种形式我们避免了对加法门的约束产生额外开销,而是在对乘法门进行约束的同时零开销的对加法关系进行约束,这是groth16的特点之一。在Groth16算法中,加法门和乘法门的地位并不是等价的,我们更关心乘法门。

下面对a,b,c,d四个变量赋予编号,以便下一步的处理,按照groth16的习惯我们将输出排列在输入之前:

可以看到除了连线a、b、c和d,还有一个特殊的连线“1”,“1”其实可以看作是一个特殊的公共输入,他的存在让我们在算法中能更容易地处理常量。“1”的值总是1。

从电路到R1CS

本部分之前先回顾一下向量的内积概念,向量的内积是从两个同维向量得到一个标量的运算,其几何意义对应了“投影”这个概念。比方说两个二维向量的乘法:

·=2×4+3×1=11

回过头看刚才的结果,因为A×B=C这个形式的存在,我们其实能够进一步的对这些等式关系进行抽象。抽象的目的是为了方便编程处理和下一步的讨论。以式子(2)为例,我们其实可以认为他是如下的形式:

根据上面介绍的向量内积,可以发现这里的A,B,C其实都是向量内积的形式:

这里的s其实就是全部的连线的值,如果证明者P是真的计算过这个电路的,则P能够获知s的值,否则P无法得知s的值。我们将这个s称为witness。因此通过上面的向量a,b,c我们就能够对s进行一定的约束,即s应该满足:

这就构成了一个一阶约束,这样的一个约束对应了电路中的一个乘法门。如果我们将所有的约束联立起来,就得到一个一阶约束系统。通过R1CS我们可以更方便的形式化描述一个零知识证明问题,从而为我们后续解决该问题提供了条件。

下篇我们会介绍如何将R1CS描述转换为多项式描述,并且通过完整的计算过程展示groth16算法的相关内容,敬请关注。

标签:区块链GROROTNFT区块链域名的用途LABS GroupCetus ProtocolNFTify

DAI热门资讯
OOT:比特币网络顺利完成Taproot软分叉升级,为什么它的意义如此之大?_以太坊最新价格行情

11月14日,矿工和矿池在区块高度709,488和709,632区块之间达成90%的锁定共识后,比特币网络成功激活了Taproot软分叉.

元宇宙:元宇宙会率先颠覆哪个行业?创作者或将再次站上“风口”_DeFi Land

自9年前微信公众号出现以来,创作者经济逐步被抬到了一个新的高度,并且随着视频创作的兴起,原来需要借助文字输出的内容开始变得更加简单,也更加全民化.

区块链:广州穗港签署全国首份跨境区块链电子合约_哪个不是区块链特性

据南方新闻网消息,11月25日,广州市政务服务数据管理局正式对外发布“信任广州”数字化平台,并与首批10家境内外数字证书服务机构签订合作框架协议,初步构建起广州区块链可信联盟链.

ROT:第七届区块链全球峰会 | 使用分布式账本、可编程合约和密码学蓝图_LBank

10月26日,麻省理工学院经济系Elizabeth&JamesKillian讲席教授RobertTownsend受邀以视频方式出席第七届区块链全球峰会并发表了题为《中央银行、不平等和新技.

BDC:法国央行:批发CBDC将有利于跨境和跨货币支付_CBDAO

据finextra11月9日报道,法国央行发表了一份关于其批发CBDC的一系列实验的乐观报告,但也发现了一些新问题.

元宇宙:图解字节跳动、腾讯、Roblox、Meta等6家中美公司在元宇宙赛道的投资、收购和开发_数字资产管理

来源:澎湃新闻 澎湃新闻记者蒋馨尔舒怡尔卫瑶原标题:《没人说得清什么是元宇宙,但所有人都想分一杯羹》除了扎克伯格,眼下布局元宇宙的公司太多了.