链资讯 链资讯
Ctrl+D收藏链资讯

COM:随机过程在数据科学和深度学习中有哪些应用?_HTT

作者:

时间:

“Theonlysimpletruthisthatthereisnothingsimpleinthiscomplexuniverse.Everythingrelates.Everythingconnects”

—JohnnyRich,TheHumanScript

介绍

机器学习的主要应用之一是对随机过程建模。机器学习中一些随机过程的例子如下:

泊松过程:用于处理等待时间以及队列。随机漫步和布朗运动过程:用于交易算法。马尔可夫决策过程:常用于计算生物学和强化学习。高斯过程:用于回归和优化问题(如,超参数调优和自动机器学习)。自回归和移动平均过程:用于时间序列分析(如,ARIMA模型)。在本文中,我将简要地向你介绍这些随机过程。

历史背景

随机过程是我们日常生活的一部分。随机过程之所以如此特殊,是因为随机过程依赖于模型的初始条件。在上个世纪,许多数学家,如庞加莱,洛伦兹和图灵都被这个话题所吸引。

如今,这种行为被称为确定性混沌,它与真正的随机性有着截然不同的范围界限。

由于爱德华·诺顿·洛伦兹的贡献,混沌系统的研究在1963年取得了突破性进展。当时,洛伦兹正在研究如何改进天气预报。洛伦兹在他的分析中注意到,即使是大气中的微小扰动也能引起气候变化。

洛伦兹用来描述这种状态的一个著名的短语是:

“AbutterflyflappingitswingsinBrazilcanproduceatornadoinTexas”(在巴西,一只蝴蝶扇动翅膀就能在德克萨斯州制造龙卷风)—EdwardNortonLorenz(爱德华·诺顿·洛伦兹)

这就是为什么今天的混沌理论有时被称为“蝴蝶效应”。

分形学

一个简单的混沌系统的例子是分形(如图所示)。分形是在不同尺度上不断重复的一种模式。由于分形的缩放方式,分形不同于其他类型的几何图形。分形是递归驱动系统,能够捕获混沌行为。在现实生活中,分形的例子有:树、河、云、贝壳等。

Glassnode:美国交易所的比特币流出量明显少于海外交易所:金色财经报道,区块链分析公司Glassnode的数据显示,美国交易所的比特币流出量明显少于海外交易所。Glassnode按地区对领先交易所进行了分类,将Coinbase、Kraken和Gemini标记为在岸(美国)交易所,将Binance、Huobi和OKX标记为离岸交易所,主要服务于亚洲市场。报告发现,尽管面临越来越严格的监管审查,美国交易所的资金流出却明显减少。Coinbase、Kraken和Gemini的最高月度流出发生在7月20日,有22,241 BTC离开这些平台。截至8月2日,美国交易所的月度流出量为13,346 BTC,明显低于离岸交易所32,466 BTC的流出量。[2023/8/4 16:17:12]

图1:MC.Escher,SmallerandSmaller

在艺术领域有很多自相似的图形。毫无疑问,MC.Escher是最著名的艺术家之一,他的作品灵感来自数学。事实上,在他的画中反复出现各种不可能的物体,如彭罗斯三角形和莫比乌斯带。在"SmallerandSmaller"中,他也反复使用了自相似性(图1)。除了蜥蜴的外环,画中的内部图案也是自相似性的。每重复一次,它就包含一个有一半尺度的复制图案。

确定性和随机性过程

有两种主要的随机过程:确定性和随机性。

在确定性过程中,如果我们知道一系列事件的初始条件(起始点),我们就可以预测该序列的下一步。相反,在随机过程中,如果我们知道初始条件,我们不能完全确定接下来的步骤是什么。这是因为这个过程可能会以许多不同的方式演化。

在确定性过程中,所有后续步骤的概率都为1。另一方面,随机性随机过程的情况则不然。

比特币KOL Dan Held退出Kraken营销团队,将专注于个人咨询业务:5月6日消息,援引消息人士报道,比特币 KOL Dan Held 退出 Kraken 营销团队,将专注于个人咨询业务。消息人士表示,Dan Held 不会直接退出 Kraken,而是将作为 Kraken品牌大使。Kraken 于 2019 年收购了 Dan Held 创立的加密投资组合管理初创公司 Interchange,此后 Dan Held 成为了 Kraken 的业务发展主管,一年后转任其增长营销团队的主管。(CoinDesk )[2022/5/6 2:53:22]

任何完全随机的东西对我们都没有任何用处,除非我们能识别出其中的模式。在随机过程中,每个单独的事件都是随机的,尽管可以识别出连接这些事件的隐藏模式。这样,我们的随机过程就被揭开了神秘的面纱,我们就能够对未来的事件做出准确的预测。

为了用统计学的术语来描述随机过程,我们可以给出以下定义:

观测值:一次试验的结果。总体:所有可能的观测值,可以记为一个试验。样本:从独立试验中收集的一组结果。例如,抛一枚均匀硬币是一个随机过程,但由于大数定律,我们知道,如果进行大量的试验,我们将得到大约相同数量的正面和反面。

大数定律指出:

“随着样本规模的增大,样本的均值将更接近总体的均值或期望值。因此,当样本容量趋于无穷时,样本均值收敛于总体均值。重要的一点是样本中的观测必须是相互独立的。”--JasonBrownlee

随机过程的例子有股票市场和医学数据,如血压和脑电图分析。

泊松过程

泊松过程用于对一系列离散事件建模,在这些事件中,我们知道不同事件发生的平均时间,但我们不知道这些事件确切在何时发生。

如果一个随机过程能够满足以下条件,则可以认为它属于泊松过程:

动态 | 当前比特币全网未确认交易为5461笔:BTC.com数据显示,目前比特币全网未确认交易数量为5461笔,全网算力为89.47 EH/s,24小时交易速率为3.99交易/秒,目前全网难度为12.72 T,预测下次难度下调7.37%至11.78 T,距离调整还剩12天16小时。[2019/11/10]

事件彼此独立(如果一个事件发生,并不会影响另一个事件发生的概率)。两个事件不能同时发生。事件的平均发生比率是恒定的。让我们以停电为例。电力供应商可能会宣传平均每10个月就会断电一次,但我们不能准确地说出下一次断电的时间。例如,如果发生了严重问题,可能会连续停电2-3天(如,让公司需要对电源供应做一些调整),以便在接下来的两天继续使用。

因此,对于这种类型的随机过程,我们可以相当确定事件之间的平均时间,但它们是在随机的间隔时间内发生的。

由泊松过程,我们可以得到一个泊松分布,它可以用来推导出不同事件发生之间的等待时间的概率,或者一个时间段内可能发生事件的数量。

泊松分布可以使用下面的公式来建模(图2),其中k表示一个时期内可能发生的事件的预期数量。

图2:泊松分布公式

一些可以使用泊松过程模拟的现象的例子是原子的放射性衰变和股票市场分析。

随机漫步和布朗运动过程

随机漫步是可以在随机方向上移动的任意离散步的序列(长度总是相同)(图3)。随机漫步可以发生在任何维度空间中(如:1D,2D,nD)。

动态 | 加州19岁青年通过劫持手机号码盗取比特币被起诉:据CCN消息,19岁的Xzavyer Narvaez由于电脑犯罪、身份欺诈和重大盗窃罪等7项罪行而受到加州执法官员指控。据悉,他还通过劫持他人手机盗取比特币并购买了豪车,从BitPay和Bittrex调取了其消费156枚比特币(价值100万美元)的记录。[2018/8/23]

图3:高维空间中的随机漫步

现在我将用一维空间(数轴)向您介绍随机漫步,这里解释的这些概念也适用于更高维度。

我们假设我们在一个公园里,我们看到一只狗在寻找食物。它目前在数轴上的位置为0,它向左或向右移动找到食物的概率相等(图4)。

图4:数轴

现在,如果我们想知道在N步之后狗的位置是多少,我们可以再次利用大数定律。利用这个定律,我们会发现当N趋于无穷时,我们的狗可能会回到它的起点。无论如何,此时这种情况并没有多大用处。

因此,我们可以尝试使用均方根(RMS)作为距离度量(首先对所有值求平方,然后计算它们的平均值,最后对结果求平方根)。这样,所有的负数都变成正数,平均值不再等于零。

在这个例子中,使用RMS我们会发现,如果我们的狗走了100步,它平均会从原点移动10步(√100=10)。

如前面所述,随机漫步用于描述离散时间过程。相反,布朗运动可以用来描述连续时间的随机漫步。

隐马尔科夫模型

隐马尔可夫模型都是关于认识序列信号的。它们在数据科学领域有大量应用,例如:

计算生物学。写作/语音识别。自然语言处理(NLP)。强化学习HMMs是一种概率图形模型,用于从一组可观察状态预测隐藏(未知)状态序列。

智利加密货币交易所Buda.com在阿根廷上线:据bitcoin.com消息,智利加密货币交易所Buda.com在阿根廷上线,初始支持四种加密货币,该交易所已经在另外三个国家开展业务,称阿根廷有潜力在一年内成为其最重要的市场。[2018/5/30]

这类模型遵循马尔可夫过程假设:

“鉴于我们知道现在,所以未来是独立于过去的"

因此,在处理隐马尔可夫模型时,我们只需要知道我们的当前状态,以便预测下一个状态(我们不需要任何关于前一个状态的信息)。

要使用HMMs进行预测,我们只需要计算隐藏状态的联合概率,然后选择产生最高概率(最有可能发生)的序列。

为了计算联合概率,我们需要以下三种信息:

初始状态:任意一个隐藏状态下开始序列的初始概率。转移概率:从一个隐藏状态转移到另一个隐藏状态的概率。发射概率:从隐藏状态移动到观测状态的概率举个简单的例子,假设我们正试图根据一群人的穿着来预测明天的天气是什么(图5)。

在这种例子中,不同类型的天气将成为我们的隐藏状态。晴天,刮风和下雨)和穿的衣服类型将是我们可以观察到的状态(如,t恤,长裤和夹克)。初始状态是这个序列的起点。转换概率,表示的是从一种天气转换到另一种天气的可能性。最后,发射概率是根据前一天的天气,某人穿某件衣服的概率。

图5:隐马尔可夫模型示例

使用隐马尔可夫模型的一个主要问题是,随着状态数的增加,概率和可能状态的数量呈指数增长。为了解决这个问题,可以使用维特比算法。

如果您对使用HMMs和生物学中的Viterbi算法的实际代码示例感兴趣,可以在我的Github代码库中找到它。

从机器学习的角度来看,观察值组成了我们的训练数据,隐藏状态的数量组成了我们要调优的超参数。

机器学习中HMMs最常见的应用之一是agent-based情景,如强化学习(图6)。

图7:掷骰子公平的概率分布

无论如何,你玩得越多,你就越可以看到到骰子总是落在相同的面上。此时,您开始考虑骰子可能是不公平的,因此您改变了关于概率分布的最初信念(图8)。

图8:不公平骰子的概率分布

这个过程被称为贝叶斯推理。

贝叶斯推理是我们在获得新证据的基础上更新自己对世界的认知的过程。

我们从一个先前的信念开始,一旦我们用全新的信息更新它,我们就构建了一个后验信念。这种推理同样适用于离散分布和连续分布。

因此,高斯过程允许我们描述概率分布,一旦我们收集到新的训练数据,我们就可以使用贝叶斯法则(图9)更新分布。

图9:贝叶斯法则

自回归移动平均过程

自回归移动平均(ARMA)过程是一类非常重要的分析时间序列的随机过程。ARMA模型的特点是它们的自协方差函数只依赖于有限数量的未知参数(对于高斯过程是不可能的)。

缩略词ARMA可以分为两个主要部分:

自回归=模型利用了预先定义的滞后观测值与当前滞后观测值之间的联系。移动平均=模型利用了残差与观测值之间的关系。ARMA模型利用两个主要参数(p,q),分别为:

p=滞后观测次数。q=移动平均窗口的大小。ARMA过程假设一个时间序列在一个常数均值附近均匀波动。如果我们试图分析一个不遵循这种模式的时间序列,那么这个序列将需要被差分,直到分割后的序列具有平稳性。

这可以通过使用一个ARIMA模型来实现,如果你有兴趣了解更多,我写了一篇关于使用ARIMA进行股票市场分析的文章。

谢谢阅读!

参考文献

MCEscher,“SmallerandSmaller”—1956.访问:https://www.etsy.com/listing/288848445/m-c-escher-print-escher-art-smaller-and

机器学习中大数定律的简要介绍。MachineLearningMastery,JasonBrownlee.访问:https://machinelearningmastery.com/a-gentle-introduction-to-the-law-of-large-numbers-in-machine-learning/

正态分布,二项分布,泊松分布,MakeMeAnalyst.访问:http://makemeanalyst.com/wp-content/uploads/2017/05/Poisson-Distribution-Formula.png

通用维基百科.Accessedat:https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif

数轴是什么?MathematicsMonste.访问:https://www.mathematics-monster.com/lessons/number_line.html

机器学习算法:SD(σ)-贝叶斯算法.SagiShaier,Medium.访问:https://towardsdatascience.com/ml-algorithms-one-sd-%CF%83-bayesian-algorithms-b59785da792a

DeepMind的人工智能正在自学跑酷,结果非常令人惊讶。TheVerge,JamesVincent.访问:https://www.theverge.com/tldr/2017/7/10/15946542/deepmind-parkour-agent-reinforcement-learning

为数据科学专业人员写的强大的贝叶斯定理介绍。KHYATIMAHENDRU,AnalyticsVidhya.Accessedat:https://www.analyticsvidhya.com/blog/2019/06/introduction-powerful-bayes-theorem-data-science/

viahttps://towardsdatascience.com/stochastic-processes-analysis-f0a116999e4

今日资源推荐:AI入门、大数据、机器学习免费教程

35本世界顶级原本教程限时开放,这类书单由知名数据科学网站KDnuggets的副主编,同时也是资深的数据科学家、深度学习技术爱好者的MatthewMayo推荐,他在机器学习和数据科学领域具有丰富的科研和从业经验。

点击链接即可获取:https://ai.yanxishe.com/page/resourceDetail/417

雷锋网雷锋网雷锋网

标签:COMHTTINGTPSDecentralized Community Investment Protocolhtt币价格今日行情Meta Thingshttps://etherscan.io

fil币价格今日行情热门资讯
比特币:比特币惊魂一周:半夜被爆仓短信惊醒痛哭 246份合约富豪倒下 大额转账是避险反击还是圈钱跑路_加密货币市场行情走势分析

来源:金融界网站 作者:亓宁 一周前还在1万美元上方的比特币又给投资者上了一课。作为全球最受欢迎的加密货币之一,比特币在周二一度暴跌15%,触及7944.33美元低点,成今年6月中旬以来首次跌破.

比特币:巴比特专栏_区块链游戏

作为一名分布式商业的观察者与从业者,在过去的几年里,笔者有幸见证了包括工业、科技、金融在内诸多行业天翻地覆的发展。而研究的时候,就免不了要对各个行业的历史进行回溯.

COM:《猫和老鼠》更新5个重点内容,分享商城增加3个皮肤!_SMART SHIBA

游戏再次进行更新了,在本期内容,浩天梳理了下更新的几个重点内容,除了剑客杰瑞的S级皮肤“白衣剑少”之外,更新还有5个重点内容.

:此生,我能想象到最浪漫的事,就是和你一起看遍人民币上的风景!_

2019年版第五套人民币,在保持现行第五套人民币主图案等相关要素不变的前提下,对票面效果、防伪特征及其布局等进行了调整,采用先进的防伪技术,提高防伪能力和印制质量,使公众和自助设备易于识别.

比特币价格:比特币的存在意义:是像黄金一样的避风港吗_去中心化金融

比特币为何存在?这个问题如果五年前提出的话,看上去会很难回答,但现在投资者们似乎越来越清楚答案——没错,比特币存在的理由就是:数字黄金.

BSV:专访比特币协会中国区负责人Lise Li:“新官上任”,BSV如何补齐中国区发展版图?_ISE

摘要:一直以来,BSV在国内都处在一种不愠不火的状态,本次BitcoinAssociation委任LiseLi为中国区负责人,也将从技术普及、项目落地等层面全面助推BSV打造全球生态的愿景.