上周,OpenAI 大型语言模型 GPT-4 一经公布便引发了全球科技圈与媒体的关注,60秒创建出一款小游戏,将一张草图快速变为功能性的网站,完美通过历史、数学等几乎所有的学科考试,检查代码漏洞等等,各种逆天的功能展示它极为强大的能力,可以说,GPT-4 成为了在知识、技能、逻辑领域的全能人才,比以往的任何 AI 都要强大,而这一款疯狂的产品或将预示着 AI 奇点的到来。
GPT-4与GPT-3.5各项考试成绩对比
在 AI 开始不断刷新人们认知的同时,另一个更为底层的领域也同样发生着巨变,那就是算力。众所周知,AI 模型都需要消化大规模的数据,同时也需要消耗更为庞大的算力,诸如图像识别、自然语言处理和机器学习等各种AI应用和模型的训练,都依赖于庞大算力的加持。
加密资产风险管理公司Elliptic宣布整合ChatGPT:金色财经报道,加密资产风险管理公司 Elliptic 宣布将大型语言模型 (LLM) ChatGPT整合到其链下情报和研究收集工作,帮助研究人员和调查人员以更快的速度和数量更多地综合和组织有关新风险因素的情报,集成ChatGPT将使Elliptic确切了解客户的风险敞口,以做出更明智和安全的决策。(prnewswire)[2023/6/2 11:54:36]
据 OpenAl 此前发布的数据显示,从2012年到2020年,其算力消耗平均每3.4个月就翻倍一次,8年间算力增长了三十万倍,更不用谈自去年 ChatGPT 推出后爆火所带来的需求暴涨。
此外,AI 时代算力的增长也远远超过了摩尔定律每18个月翻番的速率,根据中国信息通信研究院的估算,2021年全球超算算力规模大约为14EFlops,预测到2030年全球超算算力将达到0.2ZFlops,平均年增速超过34%。AI 的奇点的到来也将会成就算力领域的黄金时代,同时,算力的发展好坏也将会影响着其未来的发展,两者彼此成就。
微软将对AI生成图像进行加密签名,Bing将成为ChatGPT的默认搜索引擎:5月24日消息,在微软Build 2023 开发者大会上,该公司宣布将在未来几个月内增加一项功能,让所有人都能识别 Bing Image Creator 和 Microsoft Designer 生成的图像或视频片段是否是由 AI 生成的。微软表示,该技术使用密码学方法对 AI 生成的内容进行标记和签名,并附上有关其来源的元数据信息。微软表示,该功能将适用于其两款 AI 内容生成程序支持的主要图像和视频格式,但是没有公布具体支持哪些格式。此外,微软宣布 Bing 将成为 ChatGPT 的默认搜索引擎、微软将与 OpenAI 一起打造 ChatGPT 插件生态、在 Windows11 集成 Copilot 等。[2023/5/24 15:22:34]
微软发布企业级Azure OpenAI ChatGPT服务,GPT-4将于下周发布:3月10日消息,微软发布基于Microsoft Azure的企业级Azure OpenAI ChatGPT服务,允许Azure用户可以使用AI模型(包括Dall-E 2、GPT-3.5、Codex和其他由Azure特有的高性能和企业级云服务支撑的大语言模型)加速AI时代的数字化创新。此外,微软德国公司首席技术官安德烈亚斯·布劳恩(Andreas Braun)在AI in Focus-Digital Kickoff活动中投票,GPT-4将在下周发布,将提供多模态模型,会提供完全不同的可能性——例如视频。[2023/3/10 12:54:26]
OpenAl算力消耗情况 数据来源:阿里研究院《数实融合的第三次浪潮》
目前,关于 AI 算力的优化技术主要有以下几种:
GPT突破6100USDT后出现短线下跌:据MXC抹茶行情显示,GPT在突破6100USDT后出现回调,短线下跌最高幅度为6.77%,最低价格为4614USDT。截至目前,GPT价格已经稳步回升至5500USDT。据介绍,GPT为ECOC公链上的去中心化DEFI生态项目,主要作用为进行合约延时,其获取方式为通过使用EFG进行质押挖矿(EFG已上线MXC抹茶)。挖矿计算公式为:EFG的质押数量*0.00011(24小时)。[2020/12/16 15:22:42]
GPU资源池化:通过虚拟化和远程调用,将GPU从硬件定义转换成软件定义的资源池,实现资源的共享、按需分配、弹性伸缩和统一管理。
计算精度优化:通过混合精度计算,利用不同的浮点数类型在保证模型训练和推理效果的同时,降低数据传输和存储成本。
模型压缩优化:通过参数剪枝、量化等方法,减少模型参数量和计算复杂度,降低模型大小和内存占用。
面对算力需求的增长,短期内可以从软硬件和工程优化等角度解决,但在未来十年,二十年之后呢?当芯片逼近量子极限,当 AI 的进化需要越来越庞大的数据、越来越多的预训练模型参数、越来越高的算法精度时,会带来对算力需求的指数级增长,而且这种增长是长期性的,由此带来的成本问题将会成为一个不可规避的难题。同时这也会让 AI 只有巨头才能入局的游戏,据悉,OpenAI 接受微软投资的很大原因就是为了获得微软云 Azure 的计算支持。
所以,为了能降低成本,并获得更多的算力来支持 AI 项目的进一步发展,很多新兴企只能选择与大型云算力企业合作,作为交换让渡出部分权利,而去中心化的算力系统或许能在一定程度上解决这一问题,并降低 AI 模型训练的门槛。
去中心化算力是指将分散在不同地点、不同设备上的计算资源整合起来,形成一个去中心化的网络。以此,为 AI 应用提供更加灵活、高效、低成本的计算服务,其潜在优势体现以下几个方面:
提供分布式计算能力,支持人工智能模型的训练和运行,使任何人都能运行AI模型,并在来自全球用户的真实链上数据集上进行测试。
去中心化还可以通过创建一个强大的框架来解决隐私问题。
通过提供透明、可验证的计算过程,增强人工智能模型的可信度和可靠性。
通过提供灵活、可扩展的计算资源,支持人工智能模型在各种应用场景下快速部署和运行。
提供去中心化的数据存储和管理方案。
目前,已经有项目在探索以去中心算力+AI的组合,例如:
Gensyn:该协议通过智能合约方式促进机器学习(ML)的任务分配和奖励,来快速实现 AI 模型的学习能力,适用于深度学习计算的L1层,可以在大规模、低成本的网络中实现 ML。
Flux:一个基于区块链技术的去中心化 AI 平台,通过智能合约来规范 AI 任务的发布、执行和验证过程,并使用 Token 作为激励机制。
Golem:一个提供算力市场的点对点去中心化计算网络,支持任何人都可以通过创建共享资源的网络来共享和聚合计算资源。
但去中心化算力网络与 AI 的结合也需要解决验证问题,即如何确保运算结果的正确性和可信性。此外,算力增长所带来的电力消耗也是一个不可忽视的问题,据统计,训练 GPT-3 模型消耗的能源相当于120个美国家庭一年的耗电量,而这只是实际使用模型所消耗的电力的40%左右。
相比算力增长来说,能源电力称不上难题,随着技术的突破,AI 所展现出的潜力将会激发了更多的企业和研究机构投身其中,这些问题可能会被一一解决。而从计算机视觉到自然语言处理,从机器人学到推理、搜索,人工智能所带来的生产力变革正在改变我们当前的工作方式,在技术发展的道路上,科幻照进现实只是时间问题。
来源:DeFi之道
DeFi之道
个人专栏
阅读更多
金色财经 善欧巴
金色早8点
白话区块链
Odaily星球日报
MarsBit
欧科云链
深潮TechFlow
Arcane Labs
BTCStudy
标签:ROCKETROCDEXHATCrypto Rocket Launch PlusBULL ROCK SWAPIndexChainStripchat10元等于多少代币
主持人:Chloe,Foresight News嘉宾:Evans(Arcane Group Partner)、Joshua(Antalpha Investment Manager)、Elaine.
作者:川越牛熊 本次硅谷银行和瑞士信贷的根源是加息缩表引起的,但媒体少有报道瑞士信贷巨额亏损的原因,本文我们尝试从债券现货和衍生品交易角度扒一扒硅谷银行和瑞士信贷暴雷的异同和关联.
撰文:Bruce,DODO Research编辑:Yaoyao、Lisa 总结 以太坊质押率较低,增量空间巨大,LSD 市场增长可持续.
华盛顿特区 2023 年 3 月 2 日早上好。我很高兴加入投资者咨询委员会。按照惯例,我想指出我的观点是我自己的,我不代表委员会或 SEC 工作人员发言.
你其实有一个数字身份,从网络权限到信息存储,再到存在浏览器中的信用卡记录,以及你的线上加密钱包中的内容还有存储在网络上数百个数据库中的数据。你的身份是分散的,而且是数字化的.
原文作者:RT Watson编译:Odaily星球日报, Katie辜经过了一年多的预告,科技巨头亚马逊 NFT 平台上线正式进入倒计时.